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Abstract
We consider a fair division setting of allocating indivisible items to a set of agents. In order to cope with

the well-known impossibility results related to the non-existence of envy-free allocations, we allow the

option of selling some of the items so as to compensate envious agents with monetary rewards. In fact,

this approach is not new in practice, as it is applied in some countries in inheritance or divorce cases. A

drawback of this approach is that it may create a value loss, since the market value derived by selling

an item can be less than the value perceived by the agents. Therefore, given the market values of all

items, a natural goal is to identify which items to sell so as to arrive at an envy-free allocation, while

at the same time maximizing the overall social welfare. Our work is focused on the algorithmic study

of this problem, and we provide both positive and negative results on its approximability. When the

agents have a commonly accepted value for each item, our results show a sharp separation between

the cases of two or more agents. In particular, we establish a PTAS for two agents, and we complement

this with a hardness result, that for three or more agents, the best approximation guarantee is provided

by essentially selling all items. This hardness barrier, however, is relieved when the number of distinct

item values is constant, as we provide an efficient algorithm for any number of agents. We also explore

the generalization to heterogeneous valuations, where the hardness result continues to hold, and where

we provide positive results for certain special cases.
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1. Introduction

Fair division refers to the algorithmic question of allocating resources or tasks to a set of agents

according to some justice criteria. It is by now a prominent area within Algorithmic Game

Theory and Computational Social Choice, [1, Part II], dating back to the origins of the civil

society. One of the most natural and well studied notions of fairness is envy-freeness [2]: a

division is envy-free if everyone thinks that her share is at least as valuable as the share of any

other agent. In the presence of indivisible items however, obtaining an envy-free allocation

is much more challenging [3], and it is well known that, in the majority of cases, envy-free

divisions do not exist.

An approach that has been followed by several works, in order to cope with these existential

issues, is to focus on relaxations of envy-freeness (for more on this we refer to our related
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work section). Another natural direction that comes into mind is to insist on envy-freeness but

provide some compensation (e.g., monetary) to the agents who may feel unhappy by a proposed

division. Such models have been considered in the literature, where money is either coming as

an external subsidy from a third party or is already part of the initial endowment. Under this

setting, [4] investigated the question of determining the minimum amount of money needed to

obtain an envy-free division.

In this work, we also allow for monetary rewards, but we choose a different approach, as

already initiated in [5]: we require that the money used to compensate the envious agents has

to be raised from the set of available items, by selling some of them. This is what happens,

for instance, in inheritance division. To provide some examples, as stated in Article n.9 of the

New York Laws - Real Property Actions and Article n.720 of the Italian Civil Code, whenever

an agreement is not possible, part of the inheritance can be sold through an auction. The

same practice is also used in divorce settlements. Clearly, envy-freeness is then always feasible

by selling, if needed, the whole inheritance, and equally sharing the proceeds. However, the

amount of money raised by this process can be fairly below the real value of the sold items for

at least two reasons. First, the bidders who participate in this type of auctions usually aim at

winning items at very low prices; secondly, running an auction bears organizational costs which

need to be subtracted from the proceeds. Thus, it is in the interest of the heirs to determine

an envy-free division by selling assets with as little value loss as possible. This gives rise to

an interesting optimization problem of determining which items to sell so as to arrive at an

envy-free allocation, with optimal social welfare. Algorithmically, this question has been largely

unexplored, with the exception of a particular case handled in [5].

2. Model and Definitions

We consider a set [𝑚] := {1, . . . ,𝑚} of 𝑚 indivisible items to be allocated to a set [𝑛] of 𝑛
agents. We assume that for every item 𝑗, there is a commonly accepted value 𝑣(𝑗), by all agents

1
.

The vector 𝑣 = (𝑣(1), . . . , 𝑣(𝑚)) induces an additive valuation function 𝑣 : 2[𝑚] ↦→ N, so that

for every subset 𝑆 ⊆ [𝑚], the value of 𝑆 is 𝑣(𝑆) =
∑︀

𝑗∈𝑆 𝑣(𝑗).
An additional choice, instead of allocating all items to the agents, is to sell some of them

in exchange of money. The rationale here is that if allocating all items cannot result in a fair

allocation, we could use monetary compensations from sold items to achieve a more acceptable

outcome. This may come at some value loss, since selling an item in the market can lead to a

lower price than the value perceived by the agents. In particular, we assume that we are given a

market value vector 𝑣0 = (𝑣0(1), . . . , 𝑣0(𝑚)), so that 𝑣0(𝑗) is the monetary amount that can

be obtained by selling item 𝑗, with 𝑣0(𝑗) ≤ 𝑣(𝑗), for every 𝑗 ∈ [𝑚]. Viewing the vector 𝑣0
as inducing an (alternative) additive valuation function, we have that for every 𝑆 ⊆ [𝑚], the

money obtained by selling the items of 𝑆 is equal to 𝑣0(𝑆) =
∑︀

𝑗∈𝑆 𝑣0(𝑗).
Given an instance defined by a tuple (𝑛,𝑚,𝑣,𝑣0), an allocation with items sale is a partition

of [𝑚] into 𝑛 + 1 subsets 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛), such that, for each 𝑖 ∈ [𝑛], 𝑋𝑖 is the

1

We start with this modeling choice, as it is common in inheritance or divorce settlements, that items such as land

properties or cars have a common value to the agents. In section “Contribution”, we also explore extensions beyond

this assumption.



bundle allocated to agent 𝑖 and 𝑋0 is the set of items which are sold. Hence, the money made

from 𝑋 is 𝑣0(𝑋0). The social welfare of an allocation with items sale is given by 𝑆𝑊 (𝑋) =
𝑣0(𝑋0) +

∑︀
𝑖∈[𝑛] 𝑣(𝑋𝑖). We will say that an allocation 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛) is an envy-free

allocation with items sale (from now on, simply EF-IS), if there exists a split of the money 𝑣0(𝑋0)
into 𝑛 amounts 𝜇1, . . . , 𝜇𝑛, such that, for any two agents 𝑖, 𝑖′ ∈ [𝑛], 𝑣(𝑋𝑖) + 𝜇𝑖 ≥ 𝑣(𝑋𝑖′) + 𝜇𝑖′ .

Since this needs to hold for any pair of agents, we can simplify the definition of EF-IS as

follows. Define the maximum envy of an agent 𝑖 under an allocation 𝑋 as 𝑒𝑚𝑎𝑥
𝑖 (𝑋) =

max𝑖′∈[𝑛]{𝑣(𝑋𝑖′)} − 𝑣(𝑋𝑖) (note that, as 𝑖′ can be also equal to 𝑖, 𝑒𝑚𝑎𝑥
𝑖 (𝑋) ≥ 0). Then, an

allocation is EF-IS if and only if 𝑣0(𝑋0) ≥
∑︀

𝑖∈[𝑛] 𝑒
𝑚𝑎𝑥
𝑖 (𝑋). Hence, whenever the above

equation holds, it means that there is enough money to compensate all agents having non-zero

maximum envy.

We observe that an EF-IS allocation always exists: simply sell all items and share equally

all the money. We call this allocation, the basic EF-IS allocation. Therefore, this gives rise to

the natural optimization problem of finding the best EF-IS allocation in terms of social welfare.

This constitutes the focus of our work, and we define it formally below.

BEST-EF-IS problem: Given an instance (𝑛,𝑚,𝑣,𝑣0) on 𝑛 agents, 𝑚 items, value vector 𝑣
and market value vector 𝑣0, find an allocation 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛) that is EF-IS and attains

maximum social welfare.

3. Contribution

In this work, we embark on a thorough investigation of algorithmic and complexity questions

for our problem and provide an almost tight set of results.

We first define a parameter that plays a fundamental role in the majority of our results. Given

an instance (𝑛,𝑚,𝑣,𝑣0), let 𝛼 := min𝑗∈[𝑚]:𝑣(𝑗)>0

{︁
𝑣0(𝑗)
𝑣(𝑗)

}︁
∈ [0, 1], be the largest discrepancy

between the market value and the commonly accepted value of any item. We show the NP-

hardness of our problem:

Theorem 1. For 𝑛 = 2 and 𝛼 = 0, BEST-EF-IS cannot be approximated up to any finite factor,

unless P = NP.

Theorem 2. For 𝑛 = 2 and 𝛼 ∈ (0, 1), BEST-EF-IS is NP-hard.

After establishing NP-hardness, our main results exhibit a sharp separation on the approx-

imability between the cases of 𝑛 = 2 and 𝑛 ≥ 3 agents. First, we can easily observe that the

basic EF-IS allocation (i.e., where all items are sold) is an 𝛼-approximation of BEST-EF-IS, and

we prove that, with at least three agents, no polynomial time algorithm can obtain a solution

with a better approximation than that achieved by the basic EF-IS allocation, unless P = NP.

Theorem 3. For any 𝑛 ≥ 3 and 𝛼 ∈ (0, 1), BEST-EF-IS cannot be approximated with a ratio

better than 𝛼+ 𝜖, for any constant 𝜖 > 0, unless P = NP.

On the other hand, for two agents, we are able to design a polynomial time approximation

scheme (PTAS), under the assumption that the market value of each item is not smaller than

half of the common agents’ value.



Theorem 4. There is a PTAS for BEST-EF-IS with two agents when 𝛼 ≥ 1/2.

The idea behind the PTAS is to enumerate all partial allocations of the most valuable items,

whose number is a constant depending on the desired approximation guarantee. Each such

partial allocation, which consists of the two bundles assigned to the agents together with the

bundle of sold items, is then completed processing the remaining items by non-increasing value.

At every step, the next item is allocated to the agent having the lower valued bundle, until we

reach a situation where it is possible to equalize the two bundles by using the money raised

from the already sold items and from selling a subset of the not-yet-processed ones. The main

technical effort is needed to show that, if this condition occurs, then the final allocation can

be made envy-free at the expense of a negligible loss of social welfare, while, if the condition

never occurs, then it is not possible to obtain an envy-free solution from the starting partial

allocation.

A further positive result we obtain is the design of a dynamic programming algorithm which

runs in polynomial time when the number of distinct item values is constant; this assumption

is in line with several other recent works on fair-division, e.g., [6, 7].

Theorem 5. Let 𝑇 be the number of distinct item values. BEST-EF-IS can be solved in time

𝑂(𝑛(𝑚/𝑇 )2𝑇𝑇 ).

We then move to a generalization of our model, where agents can have heterogeneous

valuations. Now, we assume that each agent 𝑖 has her own additive valuation function 𝑣𝑖, so

that 𝑣𝑖(𝑗) is the value of agent 𝑖 for item 𝑗 and 𝑣𝑖 = (𝑣𝑖(𝑗))𝑗∈[𝑚] denotes the vector of all item

values for agent 𝑖. Under heterogeneous valuation functions, we need to be more careful about

the market value vector 𝑣0. As also done in [5], we assume that for every item 𝑗, the market

value satisfies 𝑣0(𝑗) ≤ 𝑚𝑖𝑛𝑖𝑣𝑖(𝑗). We find this a minimal assumption, that should hold so that

no agent can have more value by selling an item rather than by owning it.

Let 𝛼 := min𝑖∈[𝑛],𝑗∈[𝑚]:𝑣𝑖(𝑗)>0

{︁
𝑣0(𝑗)
𝑣𝑖(𝑗)

}︁
∈ [0, 1] be the parameter defined similarly as in the

case of identical valuations. As before, the basic EF-IS allocation is a feasible solution and

trivially constitutes an optimal one when 𝛼 = 1. Moreover, the hardness results discussed

above continue to hold under heterogeneous valuations. Therefore the problem is NP-hard,

and with 3 agents or more, there is no approximation factor better than 𝛼. Nevertheless, we

are still able to provide some positive results under certain assumptions. In particular, let

𝛽 := max𝑖∈[𝑛]
max𝑗∈[𝑚] 𝑣𝑖(𝑗)

min𝑗∈[𝑚]:𝑣𝑖(𝑗)>0 𝑣𝑖(𝑗)
denote the maximum ratio between the highest and the

lowest (non-zero) valuable item of any agent. We obtain a PTAS, if 𝑛, 𝛽 and 1/𝛼 are bounded

by a constant.

Theorem 6. There is a PTAS for BEST-EF-IS with 𝑛 heterogeneous agents, when 𝑛, 𝛽 and 1/𝛼
are all 𝑂(1).

This can be seen as generalizing the PTAS obtained for the case of identical valuations, even

beyond the two agent case, but only with a constant 𝛽. The technique that we use however is

quite different from that considered for two identical agents, and is is based on an appropriate

combination of two main ideas. First, by using a linear programming formulation, we compute

a fractional solution with a bounded number of fractionally assigned items. Then, we apply a



"reverse" version of the envy cycle elimination algorithm [8], so as to decide which items to

sell, in addition to the fractional ones. We believe that this could be of independent interest for

other allocation problems as well.

Finally, we drop the assumption on 𝛽 being constant and we also provide a pseudo-polynomial

time algorithm.

Theorem 7. BEST-EF-IS can be solved in 𝑂(𝑚𝑛2𝑉 𝑛2
) time for heterogeneous valuations and in

𝑂(𝑚𝑛𝑉 𝑛) time for identical ones, where 𝑉 = max𝑖∈[𝑛]{𝑣𝑖([𝑚])} denotes the maximum value

for the entire set of items.

4. Conclusions and Future Works

Our work explores from an algorithmic perspective the model of fair division of indivisible items

initiated in [5], and provides an almost complete picture on its status. This model considers the

possibility of selling items in order to compensate envious agents in a proposed allocation.

Despite the large amount of research work devoted in the last years to the study of relaxed

notions of envy-freeness, the approach of items sale has remained largely unexplored. This may

look strange since, although relaxed notions of envy-freeness such as EFX and EF1 provide

theoretically interesting and elegant solutions to the non-existence of envy-free allocations,

from a practical point of view there are many cases in which these solutions are highly unfair

(think, for instance, of the famous basic case of a high-valued item and two agents). A possible

reason for this under-consideration might come from the intrinsic difficulty of the problem, as

witnessed by the strong computational barriers we proved in this work. However, we have also

shown that, under some (in some cases even mild) assumptions, interesting positive results are

possible.

An interesting open question that arises is whether we can extend the existence of a PTAS

for two agents, in the case of 𝛼 ∈ (0, 1/2) and identical valuations, and also in the case of

arbitrary 𝛼 and heterogeneous valuations (without further assumptions on other parameters).

Furthermore, it would be nice to study the effects of items sale for other variants of fair allocation

problems, such as for other notions of fairness (e.g., proportionality, EFX or maximin shares) or

for more general valuations beyond additivity, or for problems with additional constraints (e.g.,

under connectivity constraints [9, 10, 11]). Finally, it would be interesting to study the case of

strategic agents, as in [12], who may misreport their valuations to increase their utility.
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