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Abstract
We consider the problem of embedding a Wheeler Deterministic Finite Automaton (WDFA, in short)
into an equivalent complete WDFA, preserving the order of states and the accepted language. In some
cases, such a complete WDFA does not exist. We say that a WDFA is Wheeler-complete (W-complete, in
short) if it cannot be properly embedded into an equivalent WDFA. We give an algorithm that, given as
input a WDFA 𝒜, returns the smallest W-complete WDFA containing 𝒜: it is called the W-completion
of 𝒜. We derive some interesting applications of this algorithm concerning the construction of a WDFA
for the union and a WDFA for the complement of Wheeler languages.
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1. Introduction

The problem of embedding a finite automaton into a complete one while preserving some
specific properties is an old problem in automata theory (cf. [1], [2], [3], [4], [5]). It is referred
as the completion problem.

In this paper we approach the completion problem for the class of Wheeler automata, that
has been recently introduced in [6]. An automaton in this class has the property that there
exists a total order on its states that is propagated along equally labeled transitions. Moreover,
the order must be compatible with the underlying order of the alphabet. Wheeler automata
play an important role in the emerging field of compressed data structures (cf., for example, [7],
[8]). The regular languages that can be accepted by a Wheeler automaton are called Wheeler
languages whose study is deepened in [9], [10] and [11]. The completion problem is of particular
interest for the class of Wheeler Deterministic Finite Automata (WDFA) since, in general, the
WDFAs are not complete and there exist some Wheeler languages that cannot be accepted
by any complete Wheeler automata. In more detail, we consider the problem of embedding a
WDFA 𝒜 into a complete one, denoted by 𝐶(𝒜), such that i) 𝐶(𝒜) is a WDFA, ii) the (total)
order on the states of 𝐶(𝒜) is an extension of the order on the state of 𝒜 and iii) 𝐶(𝒜) is
equivalent to 𝒜, i.e. they recognize the same Wheeler language. In some cases, this problem
has no solution: this means that there exist some WDFAs that cannot be embedded into an
equivalent complete WDFA preserving the order of the states. We show that, in any case, there
exists a “maximal” WDFA in which 𝒜 can be embedded. It is maximal in the sense that does not
exist another WDFA containing it and we call it the Wheeler-completion of 𝒜 and it is denoted
by 𝐶𝑊 (𝒜).
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The main contribution of this paper is a completion algorithm that, having as input a WDFA
𝒜, returns its Wheeler completion 𝐶𝑊 (𝒜). In the case 𝐶𝑊 (𝒜) is a complete DFA we say that
𝒜 is completable.

We further consider some relevant applications of this completion algorithm. In fact, there
are some important constructions in automata theory that require the automata to be complete.
This is the case of boolean operations. A consequence of the fact that WDFAs are not in general
complete is that the family of Wheeler languages is closed under intersection, but it is not closed
neither under complementation nor under union (cf. [9]).

In a WDFA 𝒜, recognizing a Wheeler language 𝐿(𝒜), all the accessible states of 𝒜 are
also coaccessible. As a consequence, the set of words that can be read by 𝒜 corresponds
to Pref (𝐿(𝒜)). In 𝐶𝑊 (𝒜) the set of accessible states strictly contains, in general, that of
coaccessible ones, because it contains some sink states. With abuse of language we say that it is
also a Wheeler automaton and we call domain of 𝒜, denoted by Dom(𝒜), the set of words that
can be read by 𝐶𝑊 (𝐴). We have that 𝐿(𝒜) ⊆ 𝑃𝑟𝑒𝑓(𝐿(𝒜)) ⊆ Dom(𝒜) and the inclusions are,
in general, strict. In the case 𝒜 is completable Dom(𝒜) = Σ*.

The notion of domain of a WDFA is, in particular, useful when one considers Boolean
operations between Wheeler languages. In the second part of the paper we use the completion
algorithm to construct, under suitable condistions, a WDFA that recognizes the complement of
a Wheeler language and a WDFA that recognizes the union of two Wheeler languages. This
approach is alternative to the one proposed in [12].

2. Preliminaries and notations

If Σ is a finite alphabet, with Σ* we denote the set of finite words on Σ. If 𝐿 ⊆ Σ*, with Pref (𝐿)
we denote the set of all prefixes of words in 𝐿, Pref (𝐿) = {𝑣 ∈ Σ*| ∃𝑢 ∈ Σ* s.t. 𝑣𝑢 ∈ 𝐿}.
A deterministic finite automaton (DFA) is a quintuple 𝒜 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ) where 𝑄 is a finite
set of states, Σ is a finite alphabet, 𝛿 : 𝑄 × Σ → 𝑄 is the transition function, eventually a
partial function, 𝑠 is the initial state and 𝐹 ⊆ 𝑄 is the set of final states. We denote by 𝛿* the
generalized transition function defined on the words of Σ*. If 𝛿 is a total funtion the automaton
is complete whereas if 𝛿 is a partial function the automaton is incomplete. If 𝛿(𝑝, 𝑎) is not defined
for some 𝑝 ∈ 𝑄 and 𝑎 ∈ Σ we write 𝛿(𝑝, 𝑎) = □ and we say that 𝛿(𝑝, 𝑎) is a missing transition.

We denote by 𝐿(𝒜) the language accepted by 𝒜. It is well-known that two automata 𝒜 and
ℬ are equivalent if 𝐿(𝒜) = 𝐿(ℬ). If we denote 𝐿𝑝(𝒜) = {𝑤 ∈ Σ*| 𝛿*(𝑝, 𝑤) ∈ 𝐹}, a state 𝑝 is
a sink state (or empty state) if 𝐿𝑝(𝒜) = ∅, is a coaccesible state if 𝐿𝑝(𝒜) ̸= ∅. For any 𝑝 ∈ 𝑄 and
𝑎 ∈ Σ we define 𝐼𝑛(𝑝) = {𝑎 ∈ Σ| 𝛿(𝑞, 𝑎) = 𝑝, for some 𝑞 ∈ 𝑄}. In what follows we consider
only automata in which all the states are accessible i.e. can be reached from 𝑠, and such that
𝐼𝑛(𝑠) = ∅. An automaton is said input consistent if |𝐼𝑛(𝑝)| = 1, for each 𝑝 ∈ 𝑄 ∖ {𝑠}.

Given 𝒜 and ℬ two equivalent automata, we say that 𝒜 ⊆ ℬ if the transition graph of 𝒜 is a
subgraph of the transition graph of ℬ.

Let (𝑋,≤) a total order on 𝑋 , for any 𝑥, 𝑦 ∈ 𝑋 we write 𝑥 < 𝑦 if 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦. If
𝑋 ⊆ 𝑌 we say that we extend the order ≤ on 𝑌 if we define a total order ≤′ on 𝑌 such that ≤
is the restriction on 𝑋 of ≤′. In what follows we will say that (𝑋,≤) is a restriction of (𝑌,≤′)
and (𝑌,≤′) is an extension of (𝑋,≤).
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Figure 1: (a) A Wheeler automaton and (b) an equivalent complete automaton that is not Wheeler.

A Wheeler DFA (WDFA) is an input consistent DFA 𝒜 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), with 𝐼𝑛(𝑠) = ∅,
such that there exists in 𝑄 a total order ≤ such that

• the initial state is the minimum;
• let 𝑣1 = 𝛿(𝑢1, 𝜎1) and 𝑣2 = 𝛿(𝑢2, 𝜎2), 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑄 and 𝜎1, 𝜎2 ∈ Σ;

if 𝜎1 < 𝜎2 then 𝑣1 < 𝑣2;
if 𝜎1 = 𝜎2 and 𝑢1 ≤ 𝑢2 then 𝑣1 ≤ 𝑣2;

As a consequnce, if 𝜎1 < 𝜎2 then, for all 𝑝, 𝑞 ∈ 𝑄, if 𝐼𝑛(𝑝) = {𝜎1} and 𝐼𝑛(𝑞) = {𝜎2} then
𝑝 < 𝑞. We say that a regular language is a Wheeler language if it is recognizable by a WDFA. It
is well known that Wheeler languages are star-free languages (cf. [9]). In what follows, when
Σ = {𝑎, 𝑏} we consider 𝑎 < 𝑏.

3. Completion of Wheeler Automata.

Here we face the problem of completing a Wheeler automaton 𝒜 by an extension of the original
order and preserving the language recognized by the automaton. Given a WDFA 𝒜, the goal is
to find, when it exists, an equivalent complete Wheeler automaton ℬ such that 𝒜 ⊆ ℬ and the
order of states of ℬ is an extension of the one in 𝒜. First, recall that any incomplete DFA can
be completed by adding an empty state to which all the missing transitions converge. Such an
operation does not ensure that we obtain a Wheeler automaton, as showed in the following
example.

Example 1. Let us consider the automaton in Figure 1(a), it is a Wheeler automaton (with 𝑠 <
𝑝 < 𝑞) that accepts the language 𝑎+𝑏 and it is not complete. By adding a single sink state for each
letter as in Figure 1(b) we get the minimal input-consistent complete equivalent automaton; but it
is not Wheeler indeed since 𝑎 < 𝑏 must be 𝑡 < 𝑟, but this is impossible because 𝑠 < 𝑞. In Figure 2
an equivalent complete Wheeler automaton is depicted with states 𝑠 < 𝑝 < 𝑡 < 𝑟 < 𝑞 < 𝑤. Note
that the order is an extension of the first one, and three sink states have been added.

The previous example emphasizes two issues. On one hand, the cassical procedure of complet-
ing an automaton by adding only one sink state (or one for each letter, for the input-consistency)
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Figure 2: A complete Wheeler automaton, with 𝑠 < 𝑝 < 𝑡 < 𝑟 < 𝑞 < 𝑤, accepting 𝑎+𝑏.

could produce a DFA that is no more Wheeler. On the other hand, the automaton can, in some
cases, be completed by adding more than one empty state in order to preserve the Wheeler
property.

In some cases it is not possible to complete a Wheeler automaton by maintaining the Wheeler
property, as the following example shows.

Example 2. The automaton in Figure 3(a) is a Wheeler automaton (with 𝑠 < 𝑞 < 𝑝) that accepts
the language 𝑏+𝑎. In [9] the authors give such a language as an example of Wheeler language for
which there is not any complete Wheeler automaton that recognizes it. To prove this fact they use
some properties of the co-lexicographic order on 𝑃𝑟𝑒𝑓(𝐿(𝒜)).

Note that, if we do not require to maintain the same accepted language, the completion of a
Wheeler automaton preserving only the Wheeler property is trivial.

In the next section we give an algorithm that, receiving as input a non complete WDFA 𝒜,
adds some sink states and transitions as much as possible by maintaining the Wheeler property
and returns a WDFA.

Definition 1. Let 𝒜 be a Wheeler automaton. 𝒜 is Wheeler-complete (shortly W-complete) if for
any equivalent Wheeler automaton ℬ if 𝒜 ⊆ ℬ then 𝒜 = ℬ.
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Figure 3: (a) An incomplete Wheeler automaton accepting 𝑏+𝑎 and (b) its (incomplete) W-completion.



The following theorem gives a characterization of W-complete automata.

Theorem 1. Let 𝒜 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ) be a WDFA. 𝒜 is W-complete iff for any missing transition
𝛿(𝑞, 𝜎), with 𝑞 ∈ 𝑄, 𝜎 ∈ Σ, there exist 𝑝, 𝑡 ∈ 𝑄 with 𝑝 < 𝑞 < 𝑡 such that 𝛿(𝑝, 𝜎) = 𝛿(𝑡, 𝜎) and
it is a coaccessible state.

Proof 1. Let 𝒜 be 𝑊 -complete DFA and suppose, by contradiction, that there exists a missing
transition 𝛿(𝑞, 𝜎) = □ such that for all 𝑝, 𝑡 ∈ 𝑄, with 𝑝 < 𝑞 < 𝑡 either results 𝛿(𝑝, 𝜎) < 𝛿(𝑡, 𝜎) or
𝛿(𝑝, 𝜎) = 𝛿(𝑡, 𝜎) and it is a sink state. In the first case, a new state 𝑟, with 𝛿(𝑝, 𝜎) < 𝑟 < 𝛿(𝑡, 𝜎),
can be added to the set of states and consider the extension of the total order of the states. The
missing transition can be substituted with the proper transition 𝛿(𝑞, 𝜎) = 𝑟. We do not define
transitions starting from 𝑟, and then 𝑟 is not a coaccessible state. We obtain an equivalent WDFA
ℬ, which is an extension of 𝒜. This contradicts the hypothesis that 𝒜 is 𝑊 -complete. In the second
case, we infer the same contradiction by adding the transition 𝛿(𝑞, 𝜎) = 𝛿(𝑝, 𝜎).

Vice-versa, if, by contradiction, 𝒜 is not𝑊 -complete, there exists a WDFAℬ = (𝑄𝐵,Σ, 𝛿𝐵, 𝑠, 𝐹 )
which is a proper extension of 𝒜 and is equivalent to 𝒜. This means that there exists in 𝒜 a missing
transition 𝛿(𝑞, 𝜎) = □ such that 𝛿𝐵(𝑞, 𝜎) = 𝑟 ∈ 𝑄𝐵 . The state 𝑞 is accessible hence, denote by
𝑢 the word corresponding to the label of a path in the DFA ℬ from the initial state 1 to the state
𝑟. By the hypothesis, there exist 𝑝, 𝑡 ∈ 𝑄, with 𝑝 < 𝑞 < 𝑡 such that 𝛿(𝑝, 𝜎) = 𝛿(𝑡, 𝜎) = 𝑧 is a
coaccessible state of 𝒜 (and then also a coaccessible state of its extension ℬ). If ℬ is a WDFA, then
the inequality 𝛿𝐵(𝑝, 𝜎) ≤ 𝑟 ≤ 𝛿𝐵(𝑡, 𝜎) implies that 𝑟 = 𝑧. Since 𝑧 is a coaccessible state, then
there exists 𝑣 ∈ 𝐿𝑧 . It follows that the word 𝑢𝜎𝑣 ∈ 𝐿(ℬ) and, by the determinism, 𝑢𝜎𝑣 /∈ 𝐿(𝒜)
contradicting the equivalence of 𝒜 and ℬ. □

The proof of the following theorem is omitted due to space limitations.

Theorem 2. For any WDFA 𝒜 there exixts a unique W-complete DFA ℬ that contains 𝒜 and such
that if 𝒜 ⊆ 𝒞 ⊆ ℬ, with 𝒞 a W-complete DFA, then ℬ = 𝒞. We call it the Wheeler completion
(shortly W-completion) of 𝒜 and we denote it by 𝐶𝑊 (𝒜).

Remark that a W-complete automaton is not in general complete. See, for instance, the WDFA
in 3(b) is the W-completion of the automaton in Figure 3(a), but it is not complete. Moreover,
we say that a Wheeler automaton 𝒜 is completable if 𝐶𝑊 (𝒜) is complete.

4. An algorithm for the W-completion of a Wheeler DFA

Let 𝒜 = (𝑄,Σ, 𝛿, 1, 𝐹 ) be a WDFA, where 𝑄 = {1, 2, . . . , 𝑛} is a totally ordered set of states
and Σ totally ordered alphabet.

In the sequel it is convenient to represent the transition function of the DFA as transformations
of the set 𝑄 of states, i.e. a partial mapping of 𝑄 into itself (cf. for instance [13]). For each
𝜎 ∈ Σ, the transformation 𝛿𝜎 is defined for 𝑖 ∈ 𝑄 as 𝛿𝜎(𝑖) = 𝛿(𝑖, 𝜎). If 𝛿(𝑖, 𝜎) is not defined
we write 𝛿𝜎(𝑖) = □ and we say that 𝛿𝜎(𝑖) is a missing 𝜎-transition (or a 𝜎-hole). Hence, an
arbitrary partial transformation 𝛿𝜎 can be written in the form

𝛿𝜎 =

(︂
1 2 · · · 𝑛− 1 𝑛
𝑝1 𝑝2 · · · 𝑝𝑛−1 𝑝𝑛

)︂
,
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Figure 4: The Wheeler automaton of the Example 3.

where 𝑝𝑖 = 𝛿𝜎(𝑖) and 𝑝𝑖 ∈ 𝑄 ∪ {□}, for 1 ≤ 𝑖 ≤ 𝑛. We denote by 𝑅𝜎 the subsequence of
(𝑝1, 𝑝2, . . . , 𝑝𝑛) composed by the elements different from □.

For each word 𝑤 ∈ Σ*, the transition function defines a transformation 𝛿𝑤 of 𝑄: for all 𝑖 ∈ 𝑄,
𝛿𝑤(𝑖) = 𝛿*(𝑖, 𝑤).

With this representation, the property that the DFA is a WDFA corresponds to the following
three conditions:

• For each 𝜎 ∈ Σ, 1 /∈ 𝑅𝜎 ;
• For each 𝜎 ∈ Σ, 𝑅𝜎 is a non-decreasing sequence;
• Denoted by 𝑚𝑖𝑛(𝑅𝜎) and 𝑚𝑎𝑥(𝑅𝜎) the first and the last element of 𝑅𝜎 , respectively. If
𝜎 < 𝜏 , then 𝑚𝑎𝑥(𝑅𝜎) < 𝑚𝑖𝑛(𝑅𝜏 ).

The notion of interval of missing transitions (or interval of holes) plays an important role in
our construction. For 𝑖, 𝑗 ∈ 𝑄 with 𝑗− 𝑖 ≥ 2, by 𝐼𝑖,𝑗 we denote the internal interval 𝐼𝑖,𝑗 = {𝑞 ∈
𝑄| 𝑖 < 𝑞 < 𝑗}. Remark that, in our notation, the intervals 𝐼𝑖,𝑗 do not contain the endpoints 𝑖
and 𝑗. Further, we denote by 𝐼0,𝑗 and 𝐼𝑖,𝑛+1 the left and right intevals: 𝐼0,𝑗 = {𝑞 ∈ 𝑄| 𝑞 < 𝑗}
and 𝐼𝑖,𝑛+1 = {𝑞 ∈ 𝑄| 𝑞 > 𝑖}. We say that 𝐼𝑖,𝑗 , is an interval of missing 𝜎-transitions if for each
𝑘 ∈ 𝐼𝑖,𝑗 , 𝛿𝜎(𝑘) = □ and 𝛿𝜎(𝑖), 𝛿𝜎(𝑗) ̸= □. We denote it by 𝐻𝜎(𝑖, 𝑗). In a similar way, we define
the left interval of 𝜎-holes 𝐻𝜎(0, 𝑗) and the right interval of 𝜎-holes 𝐻𝜎(𝑖, 𝑛+ 1).

Example 3. Consider the WDFA in Figure 4 over the alphabet {𝑎, 𝑏}. The transition function is
defined by the following transformations:

𝛿𝑎 =

(︂
1 2 3 4 5 6
2 3 □ □ 4 □

)︂
𝛿𝑏 =

(︂
1 2 3 4 5 6
□ □ 5 5 6 6

)︂
.

Then 𝑅𝑎 = (2, 3, 4) and 𝑅𝑏 = (5, 5, 6, 6) and the interval of missing 𝑎-transitions (𝑎-holes) are
𝐻𝑎(2, 5) = {3, 4} and 𝐻𝑎(5, 7) = {6}. The (unique) interval of missing 𝑏-transition (𝑏-holes) is
𝐻𝑏(0, 3) = {1, 2}.

In the execution of the algorithm we will deal with WDFA 𝒜 = (𝑄,Σ, 𝛿, 1, 𝐹 ) in which the
set 𝑄 of states is the union 𝑄 = 𝑄𝑐 ∪ 𝑆, where 𝑄𝑐 is the set of coaccesible states and 𝑆 is
the set of the sink states. The elements of 𝑄𝑐 are denoted by the integers {1, 2, . . . 𝑛} and the
elements of 𝑆 by rational non-integer numbers 𝑟 with 1 < 𝑟 < 𝑛+ 1. The total order in the
elements of 𝑄 = 𝑄𝑐 ∪ 𝑆 is the order of the rational numbers. In the input WDFA 𝒜, we have
𝑆 = ∅ and 𝑄 = 𝑄𝑐.



At every step, in the run of the algorithm, we update only the set 𝑆 and the transition
function 𝛿. The alphabet Σ, the set 𝑄𝑐 of coaccessible states and the set of final states 𝐹 remain
unchanged. The goal is to replace the missing transitions with proper transitions (maintaining
the Wheeler property), hence we add a new sink state, when needed, and replace all the missing
transitions in the interval with proper transitions converging to such a sink state. The original
transitions remain unchanged.

If we refer to the missing transitions has ’holes’, the above replacements are called filling the
holes. More in detail, we distinguish two kinds of interval of holes. For each 𝜎 ∈ Σ, the interval
of holes 𝐻𝜎(𝑖, 𝑗) is said to be of integer type if both 𝛿𝜎(𝑖) and 𝛿𝜎(𝑗) are integers, i.e. elements
of 𝑄𝑐. Similarly, 𝐻𝜎(0, 𝑗) (𝐻𝜎(𝑖, 𝑛+ 1)) is said to be of of integer type if 𝛿𝜎(𝑗) (resp. 𝛿𝜎(𝑖)) is
an integer. The intervals of holes that are not of integer type are said to be of non-integer type.

Finally, an interval of holes 𝐻𝜎(𝑖, 𝑗) of integer type is said to be blocking if 𝛿𝜎(𝑖) = 𝛿𝜎(𝑗).
All other intervals of holes are non-blocking.

The basic operations we consider consist of filling the holes and are desrcibed below in detail.
Fill internal and right intervals of 𝜎-holes of integer type.
Let 𝐻𝜎(𝑖, 𝑗), or 𝐻𝜎(𝑖, 𝑛+ 1), be an interval of 𝜎-holes of integer type,

• Update 𝑆 by creating a new state 𝑡𝑖 = 𝛿𝜎(𝑖) + 0.5:
𝑆 := 𝑆 ∪ {𝑡𝑖};

• Update 𝛿:
For all 𝑖 < 𝑘 < 𝑗, 𝛿𝜎(𝑘) = 𝑡𝑖;
For all 𝜏 ∈ Σ, 𝛿𝜏 (𝑡

𝑖) = □.

Fill left intervals of 𝜎-holes of integer type.
Let 𝐻𝜎(0, 𝑗) be an interval of 𝜎-holes of integer type,

• Update 𝑆 by creating a new state 𝑡𝑗 = 𝛿𝜎(𝑗)− 0.3:
𝑆 := 𝑆 ∪ {𝑡𝑗};

• Update 𝛿:
For all 𝑘 < 𝑗, 𝛿𝜎(𝑘) = 𝑡𝑗 ;
For all 𝜏 ∈ Σ, 𝛿𝜏 (𝑡

𝑗) = □.

Fill intervals of 𝜎-holes of non-integer type.
We do not distinguish between internal, right and left intervals of 𝜎-holes. We denote by 𝐻𝜎

this interval. By hypothesis, one of the endpoints (say 𝑖) of 𝐻𝜎 is such that 𝛿𝜎(𝑖) is not an
integer, i.e. it is an element of 𝑆 (a sink state). In this case, we do not add states to 𝑆, but we
update only the transition function as follows:

• Update 𝛿:
For all 𝑘 ∈ 𝐻𝜎, 𝛿𝜎(𝑘) = 𝛿𝜎(𝑖).

One can easily verify that applying any of the basic operations mentioned above to a WDFA
results in another WDFA. Moreover, notice that in order to get a total ordered set of states, only
holes in non-blocking intervals can be filled.

At each step all the holes in the non-blocking intervals are filled in an arbitrary order that
does not influence the result. Hence, some new states are created, from which the transitions



have not yet been defined. And therefore some new holes are created, which, in turn, are filled
by iterating the procedure.
The procedure stops when either all holes disappear (in such a case we obtain a complete
automaton) or only blocking intervals of holes remains (in this second case we obtain a W-
complete automaton which is not complete) (cf. Theorem 1).

Example 4. Let 𝒜 = (𝑄,Σ, 𝛿, 1, 𝐹,≤) with 𝑄 = {1, 2, . . . , 6} depicted in Figure 4 and transi-
tion functions:

𝛿𝑎 =

(︂
1 2 3 4 5 6
2 3 □ □ 4 □

)︂
𝛿𝑏 =

(︂
1 2 3 4 5 6
□ □ 5 5 6 6

)︂
.

By filling 𝐻𝑎(2, 5), 𝐻𝑎(5, 7) and 𝐻𝑏(0, 3) three sink states are added and transition function is
updated as follows:

𝛿𝑎 =

(︂
1 2 3 3.5 4 4.5 4.7 5 6
2 3 3.5 □ 3.5 □ □ 4 4.5

)︂
𝛿𝑏 =

(︂
1 2 3 3.5 4 4.5 4.7 5 6
4.7 4.7 5 □ 5 □ □ 6 6

)︂
.

By filling 𝐻𝑏(4, 5) one more state is added

𝛿𝑎 =

(︂
1 2 3 3.5 4 4.5 4.7 5 5.5 6
2 3 3.5 □ 3.5 □ □ 4 □ 4.5

)︂
𝛿𝑏 =

(︂
1 2 3 3.5 4 4.5 4.7 5 5.5 6
4.7 4.7 5 □ 5 5.5 5.5 6 □ 6

)︂
.

By filling all the intervals of non-integer type only the transition function is updated to get the
following W-complete automaton depicted in Figure 5.

𝛿𝑎 =

(︂
1 2 3 3.5 4 4.5 4.7 5 5.5 6
2 3 3.5 3.5 3.5 3.5 3.5 4 4.5 4.5

)︂
𝛿𝑏 =

(︂
1 2 3 3.5 4 4.5 4.7 5 5.5 6
4.7 4.7 5 □ 5 5.5 5.5 6 □ 6

)︂
.

Figure 5 shows the W-completion where the new sink states and new transitions are dashed.

By the description of previous operations and by Theorem 1 one can infer the following
theorem for which we omit the proof.

Theorem 3. Let 𝒜 = (𝑄,Σ, 𝛿, 1, 𝐹,≤) a WDFA with 𝑛 states and over a 𝑘 letter alphabet. The
Algorithm constructs 𝐶𝑊 (𝒜) that has at most 2𝑛+ 𝑘 − 1 states.

The W-completion 𝐶𝑊 (𝒜) = (𝑄𝑐 ∪ 𝑆, 𝛿′, 1, 𝐹 ) contains both coaccessible and sink states,
hence the following definition makes sense. We define Dom(𝒜) as the set of words that can be
read by 𝐶𝑊 (𝒜) from the initial state. More formally, Dom(𝒜) = {𝑤 ∈ Σ*| 𝛿′*(1, 𝑤) ̸= □}.
For instance, if 𝒜 is the WDFA of Example 2, Dom(𝒜) = Pref (𝑏+𝑎+𝑎+ 𝑎+). The following
inclusions hold:

𝐿(𝒜) ⊆ Pref (𝐿(𝒜)) ⊆ Dom(𝒜)

Moreover, we have that 𝐶𝑊 (𝒜) is complete iff Dom(𝒜) = Σ*. Such a concept is crucial for
defining the operations on Wheeler automata described in the next section.
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5. Operations on Wheeler automata.

We start this section by recalling some basic constructions in theory of automata.
Let 𝒜 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ) be a DFA and let 𝐿(𝒜) be the language recognized by 𝒜. Let

𝒜𝑐 = (𝑄,Σ, 𝛿, 𝑠,𝑄 ∖ 𝐹 ). If 𝒜 is a complete DFA then 𝒜𝑐 recognizes the complement of 𝐿(𝒜),
i.e. 𝐿(𝒜𝑐) = Σ* ∖ 𝐿(𝒜).

Let 𝒜1 = (𝑄1,Σ, 𝛿1, 𝑠1, 𝐹1) and 𝒜2 = (𝑄2,Σ, 𝛿2, 𝑠2, 𝐹2) be two DFAs over the same
alphabet Σ, recognizing respectively the languages 𝐿(𝒜1) and 𝐿(𝒜2). The cartesian product of
𝒜1 and 𝒜2 is the DFA 𝒜1 ×𝒜2 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), where:

• 𝑄 = 𝑄1 ×𝑄2,
• 𝑠 = (𝑠1, 𝑠2),
• 𝛿((𝑞1, 𝑞2), 𝜎) = (𝛿1(𝑞1, 𝜎), 𝛿2(𝑞2, 𝜎)), with (𝑞1, 𝑞2) ∈ 𝑄 and 𝜎 ∈ Σ.

If 𝐹 = 𝐹1 × 𝐹2 then 𝒜 recognizes the intersection of 𝐿(𝒜1) and 𝐿(𝒜2), i.e 𝐿(𝒜) = 𝐿(𝒜1) ∩
𝐿(𝒜2). Whereas, if 𝐹 = (𝐹1 ×𝑄2) ∪ (𝑄1 × 𝐹2) and 𝒜1 and 𝒜2 are complete DFAs, then 𝒜
recognizes the union of 𝐿(𝒜1) and 𝐿(𝒜2), i.e 𝐿(𝒜) = 𝐿(𝒜1) ∪ 𝐿(𝒜2).

Remark 1. The construction of the DFA for the intersection does not require the DFA 𝒜1 and 𝒜2

to be complete. On the contrary, we need the completeness hypothesis for the constructions relative
to the complement and the union.

In the case of Wheeler languages, we are dealing with automata that are not, in general,
complete then the above constructions could fail for WDFAs. Indeed, the class of Wheeler
languages is closed under intersection, but it is not closed under union and complementation.

In the following, we give a procedure for the complementation and a procedure for the union
of Wheeler languages. The basic idea in both constructions is the following: first apply to the
input WDFA the completion algorithm given in the previous section; then apply to the output
of the completion algorithm the classical constructions for the complement and the union.

If the W-completion is a complete WDFA, we are able to construct WDFAs both for the
complement and for the union. If not, some special cases are considered.



5.1. The Complement construction

Let 𝒜 = (𝑄,Σ, 𝛿, 1, 𝐹 ) a WDFA. We compute the W-completion 𝐶𝑊 (𝒜) = (𝑄 ∪ 𝑆, 𝛿′, 1, 𝐹 ).
We, then, construct the automaton 𝒜𝑐 = (𝑄 ∪ 𝑆,Σ, 𝛿′, 1, 𝑄 ∪ 𝑆 ∖ 𝐹 ). The language 𝐿(𝒜𝑐) is a
Wheeler language and it is such that

𝐿(𝒜𝑐) = Dom(𝒜) ∖ 𝐿(𝒜).

If 𝐶𝑊 (𝒜) is complete then 𝐿(𝒜𝑐) = 𝐿(𝒜)𝑐.

Example 5. Let us consider the transition function of the Wheeler automaton 𝒜 in Figure 1(a)
recognizing the language 𝑎+𝑏

𝛿𝑎 =

(︂
1 2 3
2 2 □

)︂
𝛿𝑏 =

(︂
1 2 3
□ 3 □

)︂
.

The W-completion 𝐶𝑊 (𝒜) is the following:

𝛿′𝑎 =

(︂
1 2 2.5 2.7 3 3.5
2 2 2.5 2.5 2.5 2.5

)︂
𝛿′𝑏 =

(︂
1 2 2.5 2.7 3 3.5
2.7 3 3.5 3.5 3.5 3.5

)︂
.

It is the complete automaton (Dom(𝒜) = Σ*) in Figure 2 with, 𝑠 = 1, 𝑝 = 2, 𝑡 = 2.5, 𝑟 =
2.7, 𝑞 = 3 and 𝑤 = 3.7. Hence the complement of the Wheeler language 𝑎+𝑏 is a Wheeler
language.

If 𝐶𝑊 (𝒜) is not complete (i.e. 𝒜 is not completable) 𝐿(𝒜𝑐) depends on 𝒜, 𝐿(𝒜𝑐) =
Dom(𝒜) ∖ 𝐿(𝒜) is a subset of 𝐿(𝐴)𝑐. Remark that this result extends the one stated in Lemma
5.1, point 5, of [9], where the Wheelereness of 𝑃𝑟𝑒𝑓(𝐿(𝒜)) ∖ 𝐿(𝒜) is considered.

Example 6. Let us consider the transition function of the Wheeler automaton in Figure 3(a)
recognizing the language 𝑏+𝑎

𝛿𝑎 =

(︂
1 2 3
□ □ 2

)︂
𝛿𝑏 =

(︂
1 2 3
3 □ 3

)︂
.

It cannot be completed (cf. Example 2) but it has a W-completion as follows.

𝛿′𝑎 =

(︂
1 1.7 2 3
1.7 1.7 1.7 2

)︂
𝛿′𝑏 =

(︂
1 1.7 2 3
3 □ □ 3

)︂
.

It is the automaton in Figure 3(b) with 𝑠 = 1, 𝑟 = 1.7, 𝑞 = 2 and 𝑝 = 3.

It is known that the Wheeler language 𝑏+𝑎 is not recognized by any complete WDFA hence
any WDFA recognizing it is not completable. On the other hand, it can occur that an automaton
𝒜 is not completable but recognizes a Wheeler language whose complement is a Wheeler
language, as shown in the following example.

Example 7. Let us consider the language 𝑎𝑎𝑏+ 𝑏. It is a Wheler language because it is finite and
its complement is a Wheeler language because it is cofinite. The following is the transition function
of a Wheeler automaton that recognizes it and is not completable

𝛿𝑎 =

(︂
1 2 3 4
2 3 □ □

)︂
𝛿𝑏 =

(︂
1 2 3 4
4 □ 4 □

)︂
.
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Figure 6: A Wheeler automaton for 𝑎+𝑏 ∪ 𝑏+𝑎.

5.2. The Union construction

Let 𝒜1 = (𝑄1,Σ, 𝛿1, 𝑠1, 𝐹1) and 𝒜2 = (𝑄2,Σ, 𝛿2, 𝑠2, 𝐹2) be two WDFAs over the same
alphabet Σ, recognizing respectively the languages 𝐿(𝒜1) and 𝐿(𝒜2).

We first construct the W-completion 𝐶𝑊 (𝒜1) of the automaton 𝒜1 and the W-completion
𝐶𝑊 (𝒜2) of the automaton 𝒜2.

Let 𝑄′
1 = 𝑄1∪𝑆1 the set of states of 𝐶𝑊 (𝒜1) and 𝑄′

2 = 𝑄2∪𝑆2 the set of states of 𝐶𝑊 (𝒜2).
We construct the automaton 𝐶𝑊 (𝒜1) × 𝐶𝑊 (𝒜2), as in the classical way. More percisely,

we consider only the accessible and coaccessible part of 𝐶𝑊 (𝐴1)× 𝐶𝑊 (𝐴2) i.e. we consider
accessible pairs (𝑝, 𝑞) such that at least one of the two states is coaccessible. Moreover, we
choose as set of final states the set of accessible states of (𝐹1 ×𝑄′

2) ∪ (𝑄′
1 × 𝐹2).

If 𝐶𝑊 (𝒜1) and 𝐶𝑊 (𝒜2) are complete, the automaton 𝐶𝑊 (𝒜1)×𝐶𝑊 (𝒜2) is a WDFA indeed,
given two states (𝑞1, 𝑞2) and (𝑝1, 𝑝2) of𝐶𝑊 (𝒜1)×𝐶𝑊 (𝒜2)we have that 𝑞1 ≤ 𝑝1 ⇐⇒ 𝑞2 ≤ 𝑝2,
since the co-lexicographic order over the words corresponds to the total order between the states.
By this remark, one can define a total order on the states of 𝐶𝑊 (𝒜1)× 𝐶𝑊 (𝒜2) satisfying the
Wheeler conditions.

If one of the automata 𝐶𝑊 (𝒜𝑖), with 𝑖 ∈ {1, 2}, is not complete, it happens that, for some
state 𝑝𝑖 ∈ 𝑄′

𝑖 and some letter 𝜎 ∈ Σ, the transition 𝛿′𝑖(𝑝𝑖, 𝜎) = □ is a missing transition. We
can consider □ as new special sink state, that cannot be placed in order relation with other
states.

In this case, the cartesian product 𝐶𝑊 (𝒜1)× 𝐶𝑊 (𝒜2) contains some states of type (𝑝, 𝑞),
but also some states of type (𝑝,□) and (□, 𝑞) and (□,□). Finally, let us define 𝛿((𝑝,□), 𝜎) =
(𝛿′1(𝑝, 𝜎),□), for any 𝑝 ∈ 𝑄1 and 𝜎 ∈ Σ and 𝛿((□, 𝑞), 𝜎) = (□, 𝛿′2(𝑞, 𝜎)), for any 𝑞 ∈ 𝑄2 and
𝜎 ∈ Σ.

If only states of the form (𝑝, 𝑞) and (𝑝,□) appear (in such accessible part), we are able to
order the pairs with different first component: (𝑝,□) < (𝑝′,□) ⇐⇒ 𝑝 < 𝑝′ and (𝑝, 𝑞) <
(𝑝′,□) ⇐⇒ 𝑝 < 𝑝′. In a similar way we are able to order states of the form (𝑝, 𝑞) and (□, 𝑞).
In this case we order the pairs according to the order of their second components, as showed in
the following example.



Example 8. Let 𝒜1 be the WDFA recognizing the language 𝑎+𝑏 and 𝐶𝑊 (𝒜1) its W-completion,
as in the Example 5, and let 𝒜2 be the WDFA recognizing the language 𝑏+𝑎 and 𝐶𝑊 (𝒜2) its
W-completion, as in the Example 6. As Figure 6 shows, the union procedure in this case gives an
automaton that contains only comparable pairs hence it is a Wheeler automaton that recognizes
𝑎+𝑏 ∪ 𝑏+𝑎.

Theorem 4. Let 𝒜1 = (𝑄1,Σ, 𝛿1, 𝑠1, 𝐹1) and 𝒜2 = (𝑄2,Σ, 𝛿2, 𝑠2, 𝐹2) be two WDFA over the
same alphabet Σ. If 𝐿(𝒜1) ⊆ Dom(𝐴2) and 𝐿(𝒜2) ⊆ Dom(𝐴1) then 𝐿(𝒜1) ∪ 𝐿(𝒜2) is a
Wheeler language.

Proof 2. Since 𝐿(𝒜1) ⊆ Dom(𝐴2) it follows that Pref (𝐿(𝒜1)) ⊆ Dom(𝐴2) and consider the
cartesian product construction defined before. Consider an accessible pair (𝑝, 𝑞) of the automaton
𝐶𝑊 (𝐴1)×𝐶𝑊 (𝐴2). If either 𝑝 = □ or 𝑝 ̸= □ and is not coaccessible then 𝑞 is coaccessible hence
𝑞 ̸= □. If 𝑝 is accessible, let 𝑢 ∈ Σ* such that 𝛿

′*
1 (1, 𝑢) = 𝑝. By hypothesis, 𝑢 ∈ Pref (𝐿(𝒜1)) ⊆

Dom(𝐴2) then 𝑞 = 𝛿
′*
2 (1, 𝑢) ̸= □. In conclusion, from the relation 𝐿(𝒜1) ⊆ Dom(𝐴2) it follows

that the set of states of the cartesian product does not contain any pair of type (𝑝,□). Analogously,
from 𝐿(𝒜2) ⊆ Dom(𝐴1) it follows that the set of states of the cartesian product does not contain
any pair of type (□, 𝑞). Hence the set of pairs can be totally ordered, i.e. the cartesian product is a
WDFA recognizing 𝐿(𝒜1) ∪ 𝐿(𝒜2).

Remark that Theorem 4 gives only a sufficient condition for the union. Example 8 shows that
the construction relative to the union works also under more general conditions. An interesting
open problem is to find necessary and sufficient conditions for the constructions relative to the
union and the complement of Wheeler languages.
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