
Towards New Characterizations of Small Circuit
Classes via Discrete Ordinary Differential Equations
(Extended Abstract)⋆

Melissa Antonelli1,2, Arnaud Durand3 and Juha Kontinen2

1Helsinki Institute for Information Technology (HIIT)
2University of Helsinki, Pietari Kalmin katu, 5, Helsinki, Finland
3Université Paris Cité, CNRS, IMJ-PRG, France

Abstract
Implicit computational complexity is an active area of theoretical computer science, which aims to
provide machine-independent characterizations of relevant complexity classes. One of the seminal
works in this field appeared in 1965 when Cobham introduced a function algebra closed under bounded
recursion on notation (BRN) to capture FP. Later on, several complexity classes have been characterized
using limited recursion schemas. In this context, an original approach was recently introduced, showing
that ordinary differential equations (ODEs) offer a natural tool for algorithmic design and providing
a characterization of FP by a new ODE-schema. The overall goal of our project is precisely that of
generalizing this approach to parallel computation: starting with original ODE-characterizations for the
small circuit classes FAC0 and FTC0, we aim to uniformly capture the whole hierarchies FAC𝑘 and
FNC𝑘 .
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1. Introduction

As computability theory investigates the limits of what is algorithmically computable, complexity
theory classifies functions based on the amount of resources required by a machine to compute
them. Taking a different viewpoint, implicit computational complexity aims to provide machine-
independent characterizations, to offer remarkable insights on the corresponding classes and
related meta-theorem in several domains, from database theory to constraint satisfaction.

One of the major approaches to computability and (implicit) complexity is constituted by
the study of recursion. Groundbreaking results in this area were due to Cobham [1], who
presented the first implicit function-algebra characterization for the class of poly-time com-
putable functions FP, and Bellantoni and Cook [2]. These works, together with other early
results in recursion theory [3, 4, 5, 6], have paved the way to several generalizations based
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on limited recursion schemas, including a few capturing parallel classes [7, 8, 9, 10, 11, 12].1

Cobham’s paper has also inspired alternative (implicit) ways to capture FP, for instance via
safe recursion [2] and ramification [27]. In particular, a different descriptive approach, based on
discrete ordinary differential equations (ODEs), was recently introduced in [28]. Its objective is
to characterize functions computable in a given complexity class as solutions of a corresponding
type of ODE. In this vein, in [28], a purely syntactic characterization of FP was given by linear
systems of equations deriving along a logarithmically growing function. Intuitively, the latter
condition controls the number of steps, while linearity controls the growth of objects generated
during the computation. Recently, this approach has also been generalized to the continuous
setting [29, 30].

Although small circuit classes have been characterized in multiple ways, the questions of
whether they can be studied through ODE lenses and whether this would shed some new
light on their features are still open. To us, these questions are interesting as, for a descriptive
approach based on ODEs to make sense and be fruitful, it has to be able to cope with very subtle
and restricted modes of computation. They are also challenging as even simple and useful math-
ematical functions may not be computable in the classes we are considering (e.g. multiplication
is not in FAC0); consequently, tools at hand and the naturalness of the approach are drastically
restricted. Our project aims to investigate these questions and to find natural ODE-oriented
function algebras to capture small circuit classes. So far, we have focused on the characterization
of functions computable by families of polynomial size and constant depth circuits (FAC0),
possibly including majority gates (FTC0). In particular, in [31], we have captured both these
classes by means of special ODE-schemas, obtained by deriving along the logarithmic function
and intuitively allowing for bit shifting operations through restricted forms of linear equations.
These case studies are intended as the first step towards a uniform characterization of other
relevant classes in the FAC𝑘 and FNC𝑘 hierarchies.

2. Capturing Complexity Classes via ODEs

As anticipated, a foundational work in recursion theory was established by Cobham [1], who
captures FP relying on the so-called bounded recursion on notation (BRN) schema:

𝑓(0,y) = 𝑔(y)

𝑓(s𝑖(𝑥),y) = ℎ𝑖(𝑓(𝑥,y), 𝑥,y) for 𝑥 ̸= 0, 𝑖 ∈ {0, 1}

𝑓(𝑥,y) ≤ 𝑘(𝑥,y) for all 𝑥,y.

In BRN, the growth of the defined function is controlled by another function 𝑘 (in FP), while
the number of induction steps is kept under control by the application of the binary successor
functions s𝑖(𝑥) = 2𝑥+ 𝑖, 𝑖 ∈ {0, 1}. However, such a schema is in a sense not fully satisfactory
as it imposes an explicit bound on recursion in the form of an already known function.
1Other implicit characterizations based on schemas and restrictions on first-order programs have been recently
introduced [13, 14, 15, 16, 17]. We thank the anonymous reviewer for pointing out this research direction. Alternative,
related approaches to capture small circuit classes have also been provided in the framework of model- [18, 19, 20,
21, 9] and proof-theory [10, 11, 22, 23, 24, 25, 26].



Cobham’s seminal work not only led to a variety of implicit characterizations for classes
other than FP, but also inspired alternative approaches to capture this class. Among them, the
proposal by [28] has the peculiarity of neither imposing any explicit bound on the recursion
schema nor assigning specific roles to variables. Indeed, it is based on special discrete ODEs,
which combine two peculiar features: deriving along specific functions, so to control the number
of computation steps, and linearity, namely a special syntactic form of the equation allowing to
control the object size.

Recall that the discrete derivative of f (x) is defined as ∆f(𝑥) = f(𝑥+1)+ f(𝑥) and that ODEs
are expressions of the form:

𝜕f(𝑥,y)

𝜕𝑥
= h

(︀
f(𝑥,y), 𝑥,y

)︀
,

where 𝜕f(𝑥,y)
𝜕𝑥 stands for the derivative of f(𝑥,y) considered as a function of 𝑥, for y fixed.

When some initial value f(0,y) = g(y) is added, this is called Initial Value Problem (IVP). In
addition, let sg : Z → Z be the sign function over Z, taking value 1 for 𝑥 > 0 and 0 otherwise. A
sg-polynomial expression 𝑃 (𝑥1, . . . , 𝑥ℎ) is an expression built over the signature {+,−,×}, the
function sg and a set of variables 𝑋 = {𝑥1, . . . , 𝑥ℎ}, plus integer constants. A sg-polynomial
expression 𝑃 is said to be essentially linear in a set of variables 𝑥, if there exist sg-polynomial
expressions 𝑄1 and 𝑄2 such that 𝑃 = 𝑄1 × 𝑥+𝑄2 and, in 𝑄1 and 𝑄2, 𝑥 occurs only under
the scope of sg.

Definition 1 (Linear 𝜆-ODE). Given g : N𝑝 → Z𝑑, h, 𝜆 : N𝑝+1 → Z𝑑 and u : Z × N𝑝+2 →
Z𝑑, the function f : N𝑝+1 → Z𝑑 is linear 𝜆-ODE definable from g, h and u if it is the solution of
the IVP with initial value f(0,y) = g(y) and such that:

𝜕f(𝑥,y)

𝜕𝜆
= u

(︀
f(𝑥,y),h(𝑥,y), 𝑥,y

)︀
(1)

with u essentially linear in the list of terms f(𝑥,y).
For 𝑥 ̸= 0, let ℓ(𝑥) denote the length of 𝑥 written in binary, i.e. ⌈log2(𝑥+ 1)⌉, and ℓ(0) = 0.

For 𝜆 = ℓ, the schema above is called linear length ODE, ℓ-ODE.

Example 1 (Function 2ℓ(𝑥)). The function 𝑥 ↦→ 2ℓ(𝑥) can be seen as the solution of the IVP with
initial value 𝑓(0) = 1 and such that 𝜕𝑓(𝑥)

𝜕ℓ = 𝑓(𝑥). The solution of this system is of the form
𝑓(𝑥) =

∏︀ℓ(𝑥)−1
𝑢=0 2 = 2ℓ(𝑥).

One of the main results of [28] is the implicit characterization of FP by the algebra made of
basic functions 0, 1, 𝜋𝑝

𝑖 , ℓ,+,−,×, sg and closed under composition (∘) and ℓ-ODE:

LDL = [0, 1, 𝜋𝑝
𝑖 , ℓ,+,−, sg; ∘, ℓ-ODE].

3. First Characterizations of Small Circuit Classes

So far, our investigation of parallel complexity via ODEs has focussed on the smallest classes in
the hierarchies FAC𝑘 and FTC𝑘.



Definition 2 (Classes FAC𝑘 and FTC𝑘). For 𝑘 ∈ N, AC𝑘 (resp., TC𝑘) is the class of lan-
guages recognized by a Dlogtime-uniform family of Boolean circuits (resp., circuits including
majority gates) of polynomial size and depth 𝑂((log 𝑛)𝑘). We denote by FAC𝑘 and FTC𝑘 the
corresponding function classes.

In particular, in [31], we have provided the first implicit characterizations ofFAC0 andFTC0

in the ODE setting. To do so, our key ingredient is the introduction of new function algebras, the
defining feature of which is the presence of special ODE schemas, intuitively corresponding to
left- and right-shifting.2 The schema below intuitively corresponds to left-shifting and (possibly)
adding a bit.

Definition 3 (ℓ-ODE2 Schema). Given 𝑔 : N𝑝 → N, ℎ : N𝑝+1 → N and 𝑘 : N𝑝 → N, the
function 𝑓 : N𝑝+1 → N is defined by ℓ-ODE2 from 𝑔, ℎ and 𝑘 if it is the solution of the IVP with
initial value 𝑓(0,y) = 𝑔(y) and such that:

𝜕𝑓(𝑥,y)

𝜕ℓ
=

(︀
2ℓ(𝑘(y)) − 1

)︀
× 𝑓(𝑥,y) + ℎ(𝑥,y) (2)

where ℎ(𝑥,y) ∈ {0, 1} and, if, for some 𝑥,y, ℎ(𝑥,y) ̸= 0, then 𝑘(y) ̸= 0.

Observe that, since this schema is introduced to characterize FAC0, the constraint imposing
𝑘(y) ̸= 0, when there exist 𝑥,y such that ℎ(𝑥,y) = 1, is really essential. If we omit it, ℓ-ODE2

will be too strong, as able to capture binary counting (which is not in FAC0). However, this
schema is not as weak as it may seem since, together with sg, it suffices to express bounded
quantification.

The second new schema we need corresponds to the (basic) right-shifting operation.

Definition 4 (ℓ-ODE3 Schema). Given 𝑔 : N𝑝 → N, the function 𝑓 : N𝑝+1 → N is defined by
ℓ-ODE3 from 𝑔 if it is the solution of the IVP with initial value 𝑓(0,y) = 𝑔(y) and such that:

𝜕𝑓(𝑥,y)

𝜕ℓ
= −

⌈︃
𝑓(𝑥,y)

2

⌉︃
(3)

where ⌈ 𝑧2⌉ is a shorthand for 𝑧 − (𝑧 ÷ 2), and ÷2 denotes integer division by 2.

Remarkably, the following closure property holds for both schemas.

Proposition 1. If 𝑓 is defined by ℓ-ODE2 or ℓ-ODE3 from functions in FAC0, then 𝑓 is in FAC0

as well.

It is relying on these schemas that we define the following ODE-style class:

ACDL = [0, 1, 𝜋𝑝
𝑖 , ℓ,+,−,÷2, sg; ∘, ℓ-ODE2, ℓ-ODE3].

2Observe that our schemas are defined using ×. This is acceptable since, the “kind of multiplication” we consider to
define them is limited to special cases (namely, multiplication by 2𝑖), which are provably computable in FAC0.



Notice that all its basic functions and (restricted) schemas are natural in the context of differential
equations and calculus. Of course, in ACDL, multiplication is not allowed. In addition, the
𝜆-ODE schema is here substituted by the two schemas ℓ-ODE2 and ℓ-ODE3, characterized by a
very limited form of “multiplication” and, as said, intuitively capturing left and right shifting.

This class is shown able to characterize FAC0.

Theorem 1. FAC0 = ACDL.

In particular, our proof that FAC0 ⊆ ACDL is indirect, namely we show that any basic function
and schema defining Clote’s function algebra for FAC0 [32, 7] can be simulated in our setting
by functions and schemas of ACDL (as done for 2ℓ(𝑥) in Example 1).

As a byproduct, an ODE-characterization for FTC0 is also established (this time passing
through Clote and Takeuti’s function algebra [22]) by simply considering an extension of ACDL,
obtained by endowing it with the basic function ×:

TCDL = [0, 1, 𝜋𝑝
𝑖 , ℓ,+,−,÷2,×, sg; ∘, ℓ-ODE2, ℓ-ODE3]

In addition, an alternative characterization of FTC0 can be introduced by substituting the
ℓ-ODE2 schema in the definition of ACDL with its more liberal version ℓ-ODE*

2.

Definition 5 (ℓ-ODE*
2 Schema). Let 𝑔 : N𝑝 → N, ℎ : N𝑝+1 → N and 𝑘 : N𝑝 → N, where ℎ

takes values in {0, 1}. Then, the function 𝑓 : N𝑝+1 → N is defined by ℓ-ODE*
2 from 𝑔, ℎ and 𝑘

when it is the solution of the IVP with initial value 𝑓(0,y) = 𝑔(y) and such that:

𝜕𝑓(𝑥,y)

𝜕ℓ
=

(︁
2ℓ(𝑘(y)) − 1

)︁
× 𝑓(𝑥,y) + ℎ(𝑥,y). (4)

Indeed, if k(y) = 0, the binary counting function, that outputs the sum of the bits of 𝑥, can be
expressed via ℓ-ODE*

2. Let bit(𝑥, 𝑦) be a special bit function returning 1 when the ℓ(𝑥)𝑡ℎ bit of
𝑦 is 1 (which can be rewritten already in ACDL). Then, bcount(𝑥) = 𝑓(𝑥, 𝑥), where 𝑓 is the
solution of the IVP with initial value 𝑓(0,y) = bit(0,y) and such that 𝜕𝑓(𝑥,y)

𝜕ℓ = bit(𝑥,y). It is
easy to see that the ℓ-ODE*

2 schema is enough not only to express binary counting but, more in
general, to capture majority computation.

Proposition 2. FTC0 = TCDL = [0, 1, 𝜋𝑝
𝑖 , ℓ,+,−,÷2, sg; ∘, ℓ-ODE*

2, ℓ-ODE3]

4. Future Work

We conceive our characterizations of FAC0 and FTC0 as the first step in a project aiming
to capture several other relevant classes, starting with FAC𝑘 and FNC𝑘. Indeed, the restric-
tions of linear ODE schemas we have adopted are surprisingly natural, and we believe that a
similar analysis would also make it possible to capture computation corresponding to 𝑘-BRN
and 𝑤-BRN [32, 7, 8]. We are currently exploring this promising path, to obtain a uniform
characterization of the (entire) mentioned hierarchies through the prism of ODEs. Another
challenging direction for future research would be to develop logical and proof-theoretical
counterparts to ODE-style algebras, for instance by introducing natural rule systems (oriented
by the ODE design) to syntactically characterize the corresponding classes.
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